A representation theorem for Boolean contact algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A representation theorem for Boolean contact algebras

We prove a representation theorem for Boolean contact algebras which implies that the axioms for the Region Connection Calculus [20] (RCC) are complete for the class of subalgebras of the algebras of regular closed sets of weakly regular connected T1 spaces.

متن کامل

The Stone Representation Theorem for Boolean Algebras

The Stone Representation Theorem for Boolean Algebras, first proved by M. H. Stone in 1936 ([4]), states that every Boolean algebra is isomorphic to a field of sets. This paper motivates and presents a proof.

متن کامل

Boolean contact algebras

The origins of Boolean contact algebras go back to the works of Leśniewski [8] on mereology and Leonard and Goodman [7] on the calculus of individuals on the one hand, and, on the other hand, the efforts of e.g. de Laguna [2], Tarski [12] and Whitehead [13] to use regions instead of points as the basic entity of geometry. A central role played the notion of “connection” (or “contact”) of region...

متن کامل

Construction of Boolean contact algebras

We consider Boolean algebras endowed with a contact relation which are abstractions of Boolean algebras of regular closed sets together with Whitehead’s connection relation [17], in which two non-empty regular closed sets are connected if they have a non-empty intersection. These are standard examples for structures used in qualitative reasoning, mereotopology, and proximity theory. We exhibit ...

متن کامل

Prime Ideal Theorem for Double Boolean Algebras

Double Boolean algebras are algebras (D,u,t, , ,⊥,>) of type (2, 2, 1, 1, 0, 0). They have been introduced to capture the equational theory of the algebra of protoconcepts. A filter (resp. an ideal) of a double Boolean algebra D is an upper set F (resp. down set I) closed under u (resp. t). A filter F is called primary if F 6= ∅ and for all x ∈ D we have x ∈ F or x ∈ F . In this note we prove t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2005

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2005.06.030